Godreche-Lancon-Billard Binary
In [Lan88], energetic properties of certain decorations of Penrose Rhomb tilings were studied. A binary tiling was defined as a tiling by Penrose rhombs, where at each vertex all angles are either in {$\frac{\pi}{5}$, $3\frac{\pi}{5}$}, or in {$2\frac{\pi}{5}$, $4\frac{\pi}{5}$}. (‘Binary’ because the decorations were used to model binary alloys, i.e., alloys consisisting of two metallic elements). The authors did not mention the substitution rule explicitly, but it is obvious from the diagrams in this paper.
Finite Rotations
Polytopal Tiles
Parallelogramm Tiles
Rhomb Tiles
Finite Local Complexity