Michael Baake

Discovered Tilings

Preview Kolakoski-(3,1), with dual
Kolakoski-(3,1), with dual

The substitution $a \rightarrow abc, b \rightarrow ab, c \rightarrow b$ is closely related to the Kolakoski-(3,1) sequence, and is one of the examples whose windows (dual tiles, Rauzy fractals) have been analysed in detail [BaS04] . It is MLD to the mirror symmetric variant given by the palindromic substitution $a \rightarrow aca, b \rightarrow a, c \rightarrow b$. As a consequence, the Kolakoski-(3,1) substitution is MLD to its mirror image, even though it is not mirror symmetric itself.

Euclidean Windowed Tiling One Dimensional Self Similar Substitution

Preview Kite Domino
Kite Domino

This is a variation of the pinwheel substitution. The kite-domino tilings are mld to the pinwheel tilings. The two prototiles are made of two pinwheel triangles, glued together at their long edge. There are two ways to do so, one gives a kite (a quadrilateral with edge lengths 1,1,2,2) and a domino (a rectangle with edge lengths 1,2,1,2). Then the substitution rule is obtained by considering two steps of the pinwheel substitution as one step.

With Decoration Finite Local Complexity Polytopal Tiles Self Similar Substitution Mld Class Pinwheel

Preview Tuebingen Triangle
Tuebingen Triangle

Beside the Penrose rhomb tilings (and its variations), this is a classical candidate to model 5-fold (resp. 10-fold) quasicrystals. The inflation factor is - as in the Penrose case - the golden mean, $\frac{\sqrt{5}}{2} + \frac{1}{2}$. The prototiles are Robinson triangles, but these tilings are not mld to the Penrose tilings. The relation is different: The Penrose rhomb tilings are locally derivable from the Tübingen Triangle tilings. These tilings were discovered and studied thoroughly by a group in Tübingen, Germany, thus the name [BKSZ90] .

Finite Rotations Polytopal Windowed Tiling Polytopal Tiles Self Similar Substitution