An one-dimensional substitution rule that uses an infinite number of proto tiles and yields a transcendental inflation multiplier.
The inflation factor is approximately $2.7899$
.
The substitution rules are given by:
$T_{0}\rightarrow T_{0},T_{1}$
$T_{1}\rightarrow 3T_{0},T_{2}$
$T_{2}\rightarrow 2T_{0},T_{1},T_{3}$
$T_{3}\rightarrow T_{0},T_{2},T_{4}$
$T_{4}\rightarrow 2T_{0},T_{3},T_{5}$
$T_{5}\rightarrow T_{0},T_{4},T_{6}$
$T_{6}\rightarrow T_{0},T_{5},T_{7}$
$T_{k}\rightarrow (1+f\left(k\right))T_{0},T_{k-1},T_{k+1}$
with $f\left(k\right)$
as the Thue-Morse sequence.
The corresponding substitution matrix can be written as:
$1 3 2 1 2 1 1 2 2 ...$
$1 0 1 0 0 0 0 0 0 ...$
$0 1 0 1 0 0 0 0 0 ...$
$0 0 1 0 1 0 0 0 0 ...$
$0 0 0 1 0 1 0 0 0 ...$
$0 0 0 0 1 0 1 0 0 ...$
$0 0 0 0 0 1 0 1 0 ...$
$0 0 0 0 0 0 1 0 1 ...$
$0 0 0 0 0 0 0 1 0 ...$
$...$
The lengths of the proto tiles are given by:
$length(T_{0})\approx1.0000$
$length(T_{1})\approx1.7899$
$length(T_{2})\approx1.9937$
$length(T_{3})\approx1.7724$
$length(T_{4})\approx1.9510$
$length(T_{5})\approx1.6708$
$length(T_{6})\approx1.7104$
[FGM2024]
Frettloeh, D. and Garber, A. and Manibo, N.
Substitution tilings with transcendental inflation factor
Discrete Analysis
accepted,