Chair
The chair tiling, as most tilings presented here, is nonperiodic. But there is a strong resemblance to periodic tiling. For instance, the set of vertex points in the tiling obviously spans a square lattice. Moreover, it is possible to detect large subsets in the tiling which are fully periodic. For instance, consider the pattern of white crosses (consisting of four tiles each) in the tiling. In fact, the chair tiling is the union of a countable set of fully periodic tile sets $L_{1}, L_{2}, L_{3}$…, where each $L_{i}$ possesses period vectors of length $2 \times 2^{i}$.
Finite Rotations
P Adic Windowed Tiling
Polytopal Tiles
Rep Tiles
Self Similar Substitution
Mld Class Chair